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2 Introduction

2.1 Acronyms and Abbreviations

AMF
BIC
BSS
CDF
CRPS
CRPSS
GAM
MAE
NO,
PGN
PIT
QA4ED
SABAT
SZA
UVF
WP
wrms

Air mass factor

Bayesian information criterion

Blick Software Suite

Cumulative distribution function
Continuous ranked probability score
Continuous ranked probability skill score
Generalized additive model

Mean absolute error

Nitrogen dioxide

Pandonia Global Network

Probability integral transform

Quality Assurance for Earth Observation
Smooth approximation of a baseline truth
Solar zenith angle

Uncertainty validation framework

Work package

Normalized rms of fitting residuals weighted with independent uncertainty
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2.2 Summary

This document is the final report of WP 2330 of the ESA project QA4EQ-2, performing an uncertainty
validation of PNG’s direct sun total column NO, product (retrieval version rnvs3p1-8).

Reliable uncertainty quantification is essential for the scientific integrity of atmospheric trace gas
retrievals. This work package presents an Uncertainty Validation Framework (UVF) developed within
the QA4EOQ project to assess the uncertainty reporting of Pandora direct sun total column NO,
products. The framework is based on the Smooth Approximation of a Baseline Truth (SABAT)
approach, which employs a Generalized Additive Model (GAM) to separate shared atmospheric
variability from instrument-specific systematic offsets. By estimating a smooth diurnal baseline
common to all co-located Pandora instruments, and individual intercepts, the method enables the
identification of systematic biases and the evaluation of reported uncertainty components.

Results from multiple sites (Figure: Ratio of optimized versus reported combined uncertainty)
demonstrate that the reported combined uncertainty tends to be underestimated in polluted

environments (e.g., Seoul-SNU) and slightly overestimated in remote locations (e.g., lzafia). The
analysis reveals that the systematic component (basically calibration uncertainty) is the dominant
contributor to combined uncertainty and primarily responsible to describe the observed mismatch
between instruments. The UVF thus provides a statistically consistent, data-driven means to validate
and refine Pandora uncertainty reporting, enhancing the reliability of PGN data products and offering a
scalable validation framework applicable to other tracegases and sensor systems following the same
requirements.
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Figure: Ratio of optimized versus reported combined uncertainty as a function of median NO,
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3 Datasets

3.1 Requirements

The basic requirement to perform uncertainty validation is having co-located measurements from at
least two instruments. Due to the developed SABAT approach, measurements do not have to be taken
at exactly the same time, but at least at the same location in order to derive a baseline truth. The
more instruments are part of the validation, the more realistic the baseline amount can be estimated.
The second requirement is a standardized uncertainty reporting (see 4.1 Uncertainty components)
nomenclature that is part of the Blick Software Suite (BSS) since processor p1-8, and based on the
collaborative work with the National Physical Laboratory.

Due to non-existence of co-located direct sun measurements with proper uncertainty reporting next
to PGN instruments, the dataset collection and study of this WP is limited to co-located Pandoras
only.

3.2 Selected locations and datasets

Location (PGN Name) Instruments Start End

BostonMA Pandora153s1 2020-04-23 2021-04-26
Pandora155s1

CharlesCityVA Pandora31s1 2024-05-24 2025-01-29
Pandora58s1

Downsview Pandora103s1 2018-06-27 2024-06-18
Pandora104s1

GreenbeltMD Pandora2s1 2022-11-09 2025-07-27
Pandroa30s1

Izana Pandora101s1 2023-09-23 2025-07-25
Pandora121s1
Pandora209s1

LaPorteTX Pandora58s1 2021-10-07 2022-01-23
Pandora63s1

Rome-SAP Pandora117s1 2020-07-22 2020-09-30
Pandora138s1

Seoul-SNU Pandora149s1 2020-11-03 2021-10-26
Pandora163s1

Table: Locations selected for uncertainty validation

The following figures provide an overview of the location-specific time series analyzed in this study.
The data are based on retrieval version rvns3p1-8, as detailed in the accompanying ReadME

document. To ensure a robust estimation of the baseline amounts, only high-quality data were

included in the analysis.

Each figure displays daily median values as dots, while the vertical bars represent the 5th and 95th
percentiles, illustrating the variability of the measurements within each day for the investigated
instruments at the respective site.


https://www.npl.co.uk/
https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
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4 Methodology

4.1 Uncertainty components

The Blick Software Suite of the Pandonia Global Network (PGN), as used within the uncertainty
validation framework, provides a standardized approach for reporting retrieval uncertainties. The
methodology follows the definitions outlined in the PGN Data Products Readme.

In this framework, the combined reported uncertainty associated with each retrieved data point is
composed of three distinct components, which differ in their temporal correlation characteristics:

)

Represents random, uncorrelated noise contributions. These uncertainties have a correlation
length in time of zero, meaning they vary independently between individual measurements. An
example is the photon noise propagated into a retrieved total column value, which is
uncorrelated between different measurement times.

1. Random/ Independent Uncertainty (Um

ndom

2. Systematic / Common Uncertainty (U

systematic )

Corresponds to systematic errors that are fully correlated in time (correlation length is
infinite). Such errors affect all retrievals using the same reference or calibration data
identically. For instance, an offset in the assumed slant column of the reference spectrum
propagates as a common uncertainty to all subsequently retrieved columns.

3. Mixed / Structured Uncertainty (Umixe d)

Describes partially correlated uncertainties, where the correlation length is finite. These
typically arise from slowly varying model or input parameter mismatches that affect a series
of temporally close measurements in a similar way but are not correlated over longer time

spans. A typical example is an error due to a mismatch between the assumed and the true
effective temperature of a trace gas, which introduces a consistent bias over short timescales
but not across different days.

The combined uncertainty (U) reported for each measurement combines these components in
quadrature according to:

2 2 2
U = \/U +U o+ U
random systematic mixed

This reporting scheme ensures that both random and systematic effects are transparently
represented and enables a consistent interpretation of uncertainty across the PGN data products.

4.2 Smooth approximation of a baseline truth (SABAT)

Uncertainty validation can only be done by comparing to a true value. Such a truth is hardly given for
atmospheric trace gases. Therefore, one approach is to create something close to this, called a
smooth approximation of a baseline truth. By using the “wisdom of the crowd” concept, we make use
of co-located instruments which are supposed to deliver the same gas amounts. The SABAT
approach was originally introduced for inter-comparison of co-located Pandora instruments
(Tiefengraber et. al, 2022), but can be used towards uncertainty validation within the Uncertainty
validation framework.

In the SABAT approach, the true atmospheric signal is represented by a shared smooth function over
time, which is common to all instruments under comparison. This shared function captures the
diurnal variability of the observed quantity (slant column amounts) and is modeled using a
Generalized Additive Model (Hastie T. and R. Tibshirani, 1986)



https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
https://www.pandonia-global-network.org/wp-content/uploads/2022/12/LuftBlick_FRM4AQ_NewAlgorithmPlan-ATBD_RP_2019005_v8.pdf
https://doi.org/10.1214/ss/1177013604
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Instrument-specific calibration offsets are modeled as intercepts, allowing for a flexible description of
systematic differences between instruments. Mathematically, the expectation value of the measured
slant column Y, is expressed by a Gaussian distribution:

y.~NQ,o0),withp =B +B + s(x)

where s(x) denotes the smooth diurnal effect estimated from all instruments i jointly, and B, are the

instrument-specific intercepts reflecting systematic biases. Hereby, the first dataset serves as the
reference with intercept By The baseline truth is then defined as the shared smooth term plus the

mean intercept across all instruments:

1l (x) = s(x) + E,Where _B = %

s

B,

baseline i

i

This baseline represents the best statistical approximation of the true atmospheric signal without
assuming any instrument as the absolute reference. The smoothness of s(x)is optimized using the
Bayesian Information Criterion (BIC) to avoid overfitting while retaining relevant diurnal structures.
The BIC penalizes model complexity and is defined as:

BIC =— 2-log(L) + log(n)-npar

where L is the likelihood, n the number of observations, and npar the number of estimated
parameters.

Figure: BIC optimization example illustrates a clear optimum for an example day at Seoul-SNU. The
corresponding smooth diurnal effect s(x) is presented by Figure: Smooth diurnal effect example.
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Figure: Smooth diurnal effect example
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Figure: BIC optimization example with optimum shown by vertical line
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Figure: SABAT daily example at Seoul-SNU before bias correction

The zoomed-in period of Figure: SABAT daily example at Seoul-SNU before bias correction shows two
datasets which measure roughly at the same time and with overlapping periods. The uncertainty bars
present the combined uncertainty as given in Section 4.1 Uncertainty components. By using the
SABAT results, the bias-corrected datasets can be brought into agreement, as illustrated in Figure:
SABAT daily example at Seoul-SNU after bias correction. Since this systematic difference should be
reflected by the systematic uncertainty component, only random and mixed components are left in

the figure.
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Figure: SABAT daily example at Seoul-SNU after bias correction with the smooth daily effect / baseline
amount in black. Combined uncertainty consists of random and mixed components only.

4.3 Metrics to evaluate the uncertainty reporting

4.3.1 Probability integral transform (PIT)

The Probability Integral Transform (PIT) is a diagnostic tool, originally used to assess the calibration
of probabilistic weather forecasts (Anderson J., 1996, Hamill T., 2001). It is based on the principle
that, for a continuous random variable Y with cumulative distribution function (CDF) F(y), the



https://doi.org/10.1175/1520-0442(1996)009%3C1518:AMFPAE%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3C0550:IORHFV%3E2.0.CO;2
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transformed variable Z=F,(Y) is uniformly distributed on the interval [0,1], provided that F, correctly
represents the true underlying distribution of Y. In practice, when a probabilistic model provides a full
distribution F,(y) for an observed value y,, the PIT value is computed as PIT=F(y,).

By aggregating PIT values over a series of distributions, one can evaluate the overall reliability (or
calibration) of the uncertainty reporting of an instrument. The typical expected visual expressions of
the PIT are shown in Figure: PIT characteristics.

The shape of the PIT histogram can be interpreted as follows, independent of the chosen binning:

e |f the uncertainty reporting is statistically consistent, the PIT histogram will be approximately
uniform.
A U-shaped histogram indicates underdispersion (the predictive distributions are too narrow).
An inverted U-shape suggests overdispersion (the predictive distributions are too wide).
Skewed histograms reveal systematic bias.

Instrument Underdispersion Instrument Calibrated Instrument Overdispersion

1000

600

Frequency

0 200

PIT PIT PIT

Figure: PIT characteristics

The PIT histograms include consistency bars, which indicate the expected statistical range for a
perfectly uniform distribution given the sample size and binning. Values falling outside these bounds
reflect statistically significant deviations from calibration (Gebetsberger et. al 2018).

4.3.2 Continuous ranked probability score (CRPS) and skill score (CRPSS)

While the PIT is just a visual representation of how well a reported distribution matches the true
realization, it cannot quantitatively evaluate the uncertainty reporting.

The Continuous Ranked Probability Score (CRPS) is a proper scoring rule used to evaluate the
accuracy of probabilistic forecasts for continuous variables, and therefore able to quantify the
reporting by a single number. It measures the distance between the predicted cumulative distribution
function (CDF) F(y) and the observed outcome Y, thus providing a single summary metric that
reflects both calibration and sharpness of the forecast distribution (Gneiting et. al 2007). Hereby,
sharpness refers to the width of the distribution. The sharper a distribution, the smaller the standard
deviation. Mathematically, the CRPS is defined as

(o]

CRPS(F,y, ) = [ [F&) = 1y 2y, }'dy,

—Q0

where 1{y > Yonsd is an indicator function thatequals 1ify > Y b and 0 otherwise. The CRPS can

be interpreted as the integrated squared difference between the forecast CDF and the empirical step
function at the observation Yope A smaller CRPS indicates a better probabilistic forecast, with zero

being the ideal score when the forecast perfectly matches the observation. For deterministic
forecasts (where F(y) is a step function centered at a single value), the CRPS reduces to the mean
absolute error (MAE), making it a natural extension of classical point forecast evaluation to the
probabilistic domain.


https://doi.org/10.1175/MWR-D-17-0364.1
https://doi.org/10.1111/j.1467-9868.2007.00587.x
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Figure: CRPS example (grey area) of a temperature forecast distribution (orange) comparing the to the
observed truth (blue).

Figure: CRPS example illustrates this concept by a probabilistic temperature forecast that is
compared to the true observation. The CRPS for this individual forecast can be interpreted as the
grey area. Ideally, the probabilistic forecast would provide the expectation value of the observation
with a standard deviation going towards zero, in order to have the smallest area, or CRPS
respectively.

The CRPS is widely used in meteorology, hydrology, and ensemble forecasting, as it provides a holistic
assessment of probabilistic forecast performance without requiring arbitrary threshold selection. In
the context of this study, the CRPS is used as an optimization criteria to adjust the reported
uncertainty towards a reporting with minimum CRPS .

To quantitatively assess the performance of the optimized uncertainty components, the Continuous
Ranked Probability Skill Score (CRPSS) can be applied. The CRPSS provides a relative measure of

predictive skill by comparing the mean Continuous Ranked Probability Score (CRPS) of the optimized
against an original reported uncertainty. It is defined as

CRPSS = 1 — o opmies
CRPS

reported

’

A CRPSS value close to 1 indicates that the optimized uncertainty description reproduces the
observed distribution well and outperforms the reference, whereas values near 0 or negative values
imply little to no improvement.

4.3.3 CRPS optimization simulations

To evaluate the behavior of the Continuous Ranked Probability Score (CRPS) as a function of reported
uncertainty, synthetic data were generated under controlled conditions where the true uncertainty
exhibits a solar zenith angle (SZA) dependency. Each simulated observation y was drawn from a
Gaussian distribution with a fixed mean p and a standard deviation o . defined as

—5¢° + 1e “574°

true

where SZA is uniformly sampled between 20° and 80°. To mimic systematic misreporting, the initially
reported uncertainties were scaled versions of the truth (Gtrue ), representing either underdispersive (

o = 0.3 0, )oroverdispersive (o = 1.50__ ) conditions.
reported true reported true

The CRPS for each Gaussian forecast was computed using the analytical form

CRPS(y,1,0) = o[z2®(2) — 1) + 2¢(2) — 1//n],
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with z%, and @ denoting the standard normal cumulative distribution and probability density

functions, respectively.

To correct the misreported uncertainties, a parametric optimization was applied by minimizing the
mean CRPS over all samples. The reported uncertainty O, portea V3 adjusted using a smooth scaling

function a(SZA) represented as a natural spline basis:

__B(SZA)B

reported

(5ZA) = o + of fset,

0-scaled
where B(SZA) is the spline basis matrix and { are the fitted coefficients. The parameters g and the
offset term was optimized using the BFGS algorithm to minimize the CRPS loss function.

Figure: Simulated underdispersive uncertainty reporting and Figure: Simulated overdispersive
uncertainty reporting illustrate the results for the underdispersive and overdispersive cases,

respectively. Each figure consists of:

1. Three PIT histograms showing the distributions for
o the truth (using o, .. ),

o the reported uncertainty, and
o the optimized uncertainty after CRPS minimization.
2. Uncertainty as a function of SZA, comparing the true, reported, and optimized values.

The optimized uncertainty curve reproduces the SZA-dependent pattern of the true uncertainty much
more accurately than the initially reported one, demonstrating that CRPS minimization successfully
detects and corrects SZA-dependent miscalibration in both scenarios. The PIT histogram based on
the optimized uncertainties is nearly flat and closely matches the distribution obtained from the true
uncertainties, indicating a proper uncertainty reporting.

In contrast, the PIT histograms derived from the underdispersive and overdispersive reported
uncertainties exhibit pronounced U-shaped and inverted U-shaped patterns, respectively, consistent
with under- and overestimation of variability.

Overall, these results confirm that CRPS-based optimization provides an effective framework for
adjusting reported uncertainties in retrieval products. By explicitly incorporating SZA as a predictor,
the method captures systematic dependencies and enhances the probabilistic reliability and
consistency of the reported uncertainty estimates.
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Figure: Simulated underdispersive uncertainty reporting with CPRS optimization
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Figure: Simulated overdispersive uncertainty reporting with CPRS optimization
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4.4 Uncertainty validation framework (UVF)

The Uncertainty Validation Framework (UVF) builds on the SABAT approach to systematically evaluate
and optimize the reported uncertainty components of the Pandora direct sun total column products.
The method separates and sequentially validates the systematic, random, and mixed uncertainty
contributions by combining the squared uncertainty components.

In the first step, the systematic daily difference between the datasets is applied using the intercept
obtained from the SABAT regression. Hereby, the maximum difference of all datasets being part of the
regression is used as the observed daily bias. To quantify the quality of the reported systematic
uncertainty, the ratio between the systematic daily difference and the reported systematic uncertainty
can be used, as this ratio expresses how well the reported uncertainty envelope covers the observed
variability:

R = observed daily bias /| U

Sys systematic

Values of Rsys> 1 indicates that the reported systematic uncertainty is too low, as the uncertainty
reporting does not reflect the true observed difference. Contrary, values of Rsys< 1 suggests an

overestimation. This ratio can therefore be directly used to scale and optimize the systematic
uncertainty component.

In the second step, after correcting for the systematic bias, the remaining variation of the datasets is
investigated. Under ideal conditions, the remaining variations would just be random noise, and
therefore be solely described by the random uncertainty reporting. However, as we expect structured
patterns to occur, the remaining uncertainty is a combination of the random plus mixed components.

These remaining uncertainty components can be visually validated using the PIT, and can be
quantified using the CRPS optimization. The CRPS minimization, performed as a function of the solar

zenith angle (SZA), ensures that the uncertainty reporting captures SZA-dependent effects and yields
a statistically consistent predictive distribution. Hereby we can also make use of the ratio approach

R = optimizedmixe 4 JU

mix mixed

Where R reports how much the mixed uncertainty component (U needs to be optimized, in

mixed)

the same way as for R
sys

Finally, the new optimized combined total uncertainty is derived as the quadratic sum of the optimized

components:

L. 2 L.
" = -+ /optimized _ + optimized .
optimized systematic mixed

5 Uncertainty validation and conclusions

The validation of the uncertainty reporting for Pandora direct sun total column NO, was conducted
using the Uncertainty Validation Framework (UVF). The UVF approach allows decomposition and
quantitative validation of the individual uncertainty components — namely, independent (random),
mixed (structured), and common (systematic) uncertainties — through optimization against
co-located Pandora observations.

Across multiple sites, the comparison between reported and optimized uncertainties revealed a
systematic underestimation of the common (systematic) component for high-NO, environments such
as Seoul-SNU. Comparing the observed systematic difference with the reported systematic
uncertainty by the ratio Rsys, the systematic uncertainty would need to be adjusted by a factor of 7-9

for the two datasets, as shown in Figure: Systematic uncertainty evaluation for Seoul-SNU .
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After removing the systematic difference, the residual variations were still not fully covered by the
remaining combined uncertainty, covering random and mixed uncertainty components. The
corresponding PIT histogram showed a typical U-shape which indicates a too low uncertainty
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: Systematic uncertainty evaluation for Seoul-SNU in the period January to March 2021 for the two
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reporting (Figure: Mixed uncertainty for Seoul-SNU). This visual finding was also supported by the
CRPS optimization, which suggests an increased mixed component.
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Figure: Mixed uncertainty for Seoul-SNU for the two datasets

The Rmixvalues larger than 1 suggests a minor increase of 1.6 to 2.2 on the median, which is SZA

dependent, as shown in Figure: Optimized mixed uncertainty for Seoul-SNU by SZA bins. These two
findings indicate that, in particular, calibration-related sources of uncertainty (e.g., slant column and
effective gas temperature in the reference spectra) might currently be underestimated in the Pandora
retrieval chain, where the uncertainty reporting does not reflect the observed differences between
datasets.
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However, Figure: Combined uncertainty for Seoul-SNU visualizes the original and optimized combined
uncertainty reporting. Even this huge scaling factor of 7-9 for systematic, and up to 2.2 for mixed
components, does not blow up the uncertainty artificially. Large scale and even small scale variations
are still distinguishable, but the uncertainty reporting obtains much more reliability about most likely
actual values of the gas amount.
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Figure: Optimized mixed uncertainty ratio for Seoul-SNU by SZA bins
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Figure: Combined uncertainty for Seoul-SNU 2020-11-12
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Figure: Combined uncertainty for Seoul-SNU zoomed in between 15:00 and 75:30 local time
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This improved reliability can be visually assessed by comparing the PIT histograms before and after
the optimization, as shown in Figure: PIT for originally and optimized uncertainty with a strongly
reduced U-shape for both datasets. The W-shape, visible for both the originally reported and the
optimized situation, can be explained by a slightly in-proper distributional assumption of the evaluated
observation. E.qg. if the observations are based on a heavier-tailed distribution such as the logistic or
student-t, evaluating a PIT using the Gaussian assumption can lead to W-shaped patterns
(Gebetsberger et. al 2018). This shape even remains after the optimization, but much less expressed
on the tails of the distribution.
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Location CRPS_reported | CRPS_optimized | Improvement CRPSS
Izana 1.37x10° 9.00%10’ 1.52 0.342
LaPorteTX 4.14x10° 2.49x10°° 1.66 0.399
Downsview 2.62x10° 1.57x10°° 1.67 0.401
CharlesCityVA 1.61x10° 9.39x1077 1.72 0.418
GreenbeltMD 2.34x10°° 1.11x10°° 2.11 0.527
Rome-SAP 5.17x10°° 2.37x10° 2.18 0.541
BostonMA 6.10x10°° 2.24x10°° 2.72 0.633
Seoul-SNU 2.24x10°® 1.78x10° 12.62 0.921

Table: CRPS and CRPSS summary sorted by improvement

Figure: PIT for originally reported (left) and optimized uncertainty (right).

This improved PIT shape is also quantified in the probabilistic validation metric, the CRPS, as
summarized in Table: CRPS and CRPSS summary. The CRPS for Seoul-SNU improved by a factor of
12.62, or expressed as a skill score of CRPSS by 0.92. While Seoul-SNU depicts a highly polluted site
that also describes one of the more extreme cases of the uncertainty reporting, improvements but of
lower magnitude were found for all other sites. Remote sites such as lzafia, show the smallest
improvement of a factor of 1.52, which translates to a skill score of 0.34.

Figure: Optimized uncertainty components summarizes the validated uncertainty components for the
investigated sites, as a function of their median NO, amounts. In contrast to Seoul-SNU, at remote
sites such as lzafia, the reported systematic uncertainty appeared even slightly overestimated. This
site-dependent behavior suggests that the uncertainty parameterization in the retrieval algorithm may
not fully capture the variability in measurement conditions or instrument configurations across the
network.

The mixed (structured) component, which captures retrieval and algorithm-related uncertainties, was
generally found to be slightly underestimated, as seen by R > 1 in the left graphic of Figure:

Optimized uncertainty components for all locations investigated. However, its overall contribution to
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the combined uncertainty is minor compared to the systematic component, and thus its effect is
largely masked in the combined uncertainty analysis.

Mixed Systematic Combined
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Figure: Optimized uncertainty components as a function of the median total NO, amounts for mixed
(left) and systematic (middle) components, and the combined uncertainty (right).

The combined uncertainty—representing the sum of independent, mixed, and systematic
contributions—showed notable site dependence. At polluted sites, the combined uncertainty was
underestimated, driven primarily by the systematic component. Conversely, for remote and cleaner
sites, a slight overestimation was observed. Nevertheless, even with an increased mixed component,
the remote sites showed an overall decreased uncertainty, due to the higher magnitude of the
systematic component.

Satellite validation processes are currently not affected by the identified underestimations, as the
associated uncertainty reporting is typically much higher for the satellite. However, the improved
quantification of the PGN uncertainty enhances the overall reliability and interpretability of Pandora
data products. The UVF approach successfully demonstrated its capability to validate and adjust
individual uncertainty components, thereby potentially strengthening confidence in the reported

uncertainty metrics. However, it must be noted that the UVF is used as a diagnostic tool to highlight
the problematic components, in order to allow a re-investigation of the algorithm.

Further work will focus on investigating the underlying causes of the underestimated systematic
uncertainty. Potential contributing factors include unaccounted calibration drifts, environmental
dependencies, or limitations in the current modeling of reference spectra. Extending the framework to
additional atmospheric constituents beyond NO, will provide a broader assessment of the Pandora
network’s uncertainty performance.
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