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1 Document change record 
Version Date Section Notes/Changes 

1 October 31, 
2025 

All First version setup 

2 Introduction 

2.1 Acronyms and Abbreviations 
AMF​ ​ Air mass factor 
BIC​ ​ Bayesian information criterion 
BSS​ ​ Blick Software Suite 
CDF​ ​ Cumulative distribution function 
CRPS​ ​ Continuous ranked probability score 
CRPSS​​ Continuous ranked probability skill score 
GAM​ ​ Generalized additive model 
MAE​ ​ Mean absolute error 
NO2​ ​ Nitrogen dioxide 
PGN​ ​ Pandonia Global Network 
PIT​ ​ Probability integral transform 
QA4EO​​ Quality Assurance for Earth Observation 
SABAT​ ​ Smooth approximation of a baseline truth 
SZA​ ​ Solar zenith angle 
UVF​ ​ Uncertainty validation framework 
WP​ ​ Work package 
wrms​ ​ Normalized rms of fitting residuals weighted with independent uncertainty 
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2.2 Summary 
This document is the final report of WP 2330 of the ESA project QA4EO-2, performing an uncertainty 
validation of PNG’s direct sun total column NO2 product (retrieval version rnvs3p1-8). 

Reliable uncertainty quantification is essential for the scientific integrity of atmospheric trace gas 
retrievals. This work package presents an Uncertainty Validation Framework (UVF) developed within 
the QA4EO project to assess the uncertainty reporting of Pandora direct sun total column NO2 
products. The framework is based on the Smooth Approximation of a Baseline Truth (SABAT) 
approach, which employs a Generalized Additive Model (GAM) to separate shared atmospheric 
variability from instrument-specific systematic offsets. By estimating a smooth diurnal baseline 
common to all co-located Pandora instruments, and individual intercepts, the method enables the 
identification of systematic biases and the evaluation of reported uncertainty components. 

Results from multiple sites (Figure: Ratio of optimized versus reported combined uncertainty) 
demonstrate that the reported combined uncertainty tends to be underestimated in polluted 
environments (e.g., Seoul-SNU) and slightly overestimated in remote locations (e.g., Izaña). The 
analysis reveals that the systematic component (basically calibration uncertainty) is the dominant 
contributor to combined uncertainty and primarily responsible to describe the observed mismatch 
between instruments. The UVF thus provides a statistically consistent, data-driven means to validate 
and refine Pandora uncertainty reporting, enhancing the reliability of PGN data products and offering a 
scalable validation framework applicable to other tracegases and sensor systems following the same 
requirements. 

 

 

 

 

 

 

Figure: Ratio of optimized versus reported combined uncertainty as a function of median NO2
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3 Datasets 

3.1 Requirements 
The basic requirement to perform uncertainty validation is having co-located measurements from at 
least two instruments. Due to the developed SABAT approach, measurements do not have to be taken 
at exactly the same time, but at least at the same location in order to derive a baseline truth. The 
more instruments are part of the validation, the more realistic the baseline amount can be estimated. 
The second requirement is a standardized uncertainty reporting (see 4.1 Uncertainty components) 
nomenclature that is part of the Blick Software Suite (BSS) since processor p1-8, and based on the 
collaborative work with the National Physical Laboratory.  

Due to non-existence of co-located direct sun measurements with proper uncertainty reporting next 
to PGN instruments, the dataset collection and study of this WP is limited to co-located Pandoras 
only. 

3.2 Selected locations and datasets 

Location (PGN Name) Instruments Start End 

BostonMA Pandora153s1 
Pandora155s1 

2020-04-23 2021-04-26 

CharlesCityVA Pandora31s1 
Pandora58s1 

2024-05-24 2025-01-29 

Downsview Pandora103s1 
Pandora104s1 

2018-06-27 2024-06-18 

GreenbeltMD Pandora2s1 
Pandroa30s1 

2022-11-09 2025-07-27 
 

Izana Pandora101s1 
Pandora121s1 
Pandora209s1 

 2023-09-23  2025-07-25 

LaPorteTX Pandora58s1 
Pandora63s1 

2021-10-07 2022-01-23 

Rome-SAP Pandora117s1 
Pandora138s1 

2020-07-22 2020-09-30 

Seoul-SNU Pandora149s1 
Pandora163s1 

2020-11-03 2021-10-26 

Table: Locations selected for uncertainty validation 

The following figures provide an overview of the location-specific time series analyzed in this study. 
The data are based on retrieval version rvns3p1-8, as detailed in the accompanying ReadME 
document. To ensure a robust estimation of the baseline amounts, only high-quality data were 
included in the analysis.​
Each figure displays daily median values as dots, while the vertical bars represent the 5th and 95th 
percentiles, illustrating the variability of the measurements within each day for the investigated 
instruments at the respective site. 

 

 

 

https://www.npl.co.uk/
https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
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Figure: Overview BostonMA 

 

Figure: Overview CharlesCityVA 

 

 

Figure: Overview Downsview 

 
Figure: Overview GreenbeltMD 
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Figure: Overview Izana 

 

Figure: Overview LaPorteTX 

Figure: Overview Rome-SAP  

 

Figure: Overview Seoul-SNU 
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4 Methodology 

4.1 Uncertainty components  
The Blick Software Suite of the Pandonia Global Network (PGN), as used within the uncertainty 
validation framework, provides a standardized approach for reporting retrieval uncertainties. The 
methodology follows the definitions outlined in the PGN Data Products Readme. 

In this framework, the combined reported uncertainty associated with each retrieved data point is 
composed of three distinct components, which differ in their temporal correlation characteristics: 

1.​ Random/ Independent Uncertainty ( )​𝑈
𝑟𝑎𝑛𝑑𝑜𝑚

Represents random, uncorrelated noise contributions. These uncertainties have a correlation 
length in time of zero, meaning they vary independently between individual measurements. An 
example is the photon noise propagated into a retrieved total column value, which is 
uncorrelated between different measurement times.​
 

2.​ Systematic / Common Uncertainty ( )​𝑈
𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

Corresponds to systematic errors that are fully correlated in time (correlation length is 
infinite). Such errors affect all retrievals using the same reference or calibration data 
identically. For instance, an offset in the assumed slant column of the reference spectrum 
propagates as a common uncertainty to all subsequently retrieved columns.​
 

3.​ Mixed / Structured Uncertainty ( )​𝑈
𝑚𝑖𝑥𝑒𝑑

Describes partially correlated uncertainties, where the correlation length is finite. These 
typically arise from slowly varying model or input parameter mismatches that affect a series 
of temporally close measurements in a similar way but are not correlated over longer time 

spans. A typical example is an error due to a mismatch between the assumed and the true 
effective temperature of a trace gas, which introduces a consistent bias over short timescales 
but not across different days. 

The combined uncertainty ( ) reported for each measurement combines these components in 𝑈
quadrature according to: 

 𝑈 =  𝑈
𝑟𝑎𝑛𝑑𝑜𝑚

2 + 𝑈
𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

2 + 𝑈
𝑚𝑖𝑥𝑒𝑑

2

This reporting scheme ensures that both random and systematic effects are transparently 
represented and enables a consistent interpretation of uncertainty across the PGN data products. 

4.2 Smooth approximation of a baseline truth (SABAT)  
Uncertainty validation can only be done by comparing to a true value. Such a truth is hardly given for 
atmospheric trace gases. Therefore, one approach is to create something close to this, called a 
smooth approximation of a baseline truth. By using the “wisdom of the crowd” concept, we make use 
of co-located instruments which are supposed to deliver the same gas amounts. The SABAT 
approach was originally introduced for inter-comparison of co-located Pandora instruments 
(Tiefengraber et. al, 2022), but can be used towards uncertainty validation within the Uncertainty 
validation framework.  

In the SABAT approach, the true atmospheric signal is represented by a shared smooth function over 
time, which is common to all instruments under comparison. This shared function captures the 
diurnal variability of the observed quantity (slant column amounts) and is modeled using a 
Generalized Additive Model (Hastie T. and R. Tibshirani, 1986) 

 

https://www.pandonia-global-network.org/wp-content/uploads/2025/01/PGN_DataProducts_Readme_v1-8-10.pdf
https://www.pandonia-global-network.org/wp-content/uploads/2022/12/LuftBlick_FRM4AQ_NewAlgorithmPlan-ATBD_RP_2019005_v8.pdf
https://doi.org/10.1214/ss/1177013604
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Instrument-specific calibration offsets are modeled as intercepts, allowing for a flexible description of 
systematic differences between instruments. Mathematically, the expectation value of the measured 
slant column  is expressed by a Gaussian distribution: 𝑦

𝑖

 𝑦
𝑖
​ ∼ 𝑁(μ

𝑖
, σ), 𝑤𝑖𝑡ℎ μ

𝑖
​ = β

0
​ + β

𝑖
​ + 𝑠(𝑥

𝑖
​)

where  denotes the smooth diurnal effect estimated from all instruments i jointly, and ​ are the 𝑠(𝑥
𝑖
​) β

𝑖
​

instrument-specific intercepts reflecting systematic biases. Hereby, the first dataset serves as the 
reference with intercept . The baseline truth is then defined as the shared smooth term plus the β

0

mean intercept across all instruments: 

 μ
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(𝑥)​ = 𝑠(𝑥) + β , 𝑤ℎ𝑒𝑟𝑒   β = 1
𝑚 ​

𝑖=1

𝑚

∑ ​β
𝑖
​

This baseline represents the best statistical approximation of the true atmospheric signal without 
assuming any instrument as the absolute reference. The smoothness of is optimized using the 𝑠(𝑥)
Bayesian Information Criterion (BIC) to avoid overfitting while retaining relevant diurnal structures. 
The BIC penalizes model complexity and is defined as: 

 𝐵𝐼𝐶 =− 2⋅𝑙𝑜𝑔(𝐿) + 𝑙𝑜𝑔(𝑛)⋅𝑛𝑝𝑎𝑟​

where L is the likelihood, n the number of observations, and ​ the number of estimated 𝑛𝑝𝑎𝑟​
parameters.  

Figure: BIC optimization example illustrates a clear optimum for an example day at Seoul-SNU. The 
corresponding smooth diurnal effect  is presented by Figure: Smooth diurnal effect example.   𝑠(𝑥)

 

 

Figure: Smooth diurnal effect example 

 

Figure: BIC optimization example with optimum shown by vertical line 
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Figure: SABAT daily example at Seoul-SNU before bias correction 

The zoomed-in period of Figure: SABAT daily example at Seoul-SNU before bias correction shows two 
datasets which measure roughly at the same time and with overlapping periods. The uncertainty bars 
present the combined uncertainty as given in Section 4.1 Uncertainty components.  By using the 
SABAT results, the bias-corrected datasets can be brought into agreement, as illustrated in Figure: 
SABAT daily example at Seoul-SNU after bias correction. Since this systematic difference should be 
reflected by the systematic uncertainty component, only random and mixed components are left in 
the figure. 

 
Figure: SABAT daily example at Seoul-SNU after bias correction with the smooth daily effect / baseline 

amount in black. Combined uncertainty consists of random and mixed components only. 

4.3 Metrics to evaluate the uncertainty reporting 

4.3.1 Probability integral transform (PIT) 

The Probability Integral Transform (PIT) is a diagnostic tool, originally used to assess the calibration 
of probabilistic weather forecasts (Anderson J., 1996, Hamill T., 2001). It is based on the principle 
that, for a continuous random variable Y with cumulative distribution function (CDF) FY(y), the 

 

https://doi.org/10.1175/1520-0442(1996)009%3C1518:AMFPAE%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3C0550:IORHFV%3E2.0.CO;2
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transformed variable Z=FY(Y) is uniformly distributed on the interval [0,1], provided that FY​ correctly 
represents the true underlying distribution of Y. In practice, when a probabilistic model provides a full 
distribution Ft(y) for an observed value yt​, the PIT value is computed as PITt=Ft(yt). 

By aggregating PIT values over a series of distributions, one can evaluate the overall reliability (or 
calibration) of the uncertainty reporting of an instrument. The typical expected visual expressions of 
the PIT are shown in Figure: PIT characteristics. 

The shape of the PIT histogram can be interpreted as follows, independent of the chosen binning: 

●​ If the uncertainty reporting is statistically consistent, the PIT histogram will be approximately 
uniform. 

●​ A U-shaped histogram indicates underdispersion (the predictive distributions are too narrow). 
●​ An inverted U-shape suggests overdispersion (the predictive distributions are too wide). 
●​ Skewed histograms reveal systematic bias. 

Figure: PIT characteristics  

The PIT histograms include consistency bars, which indicate the expected statistical range for a 
perfectly uniform distribution given the sample size and binning. Values falling outside these bounds 
reflect statistically significant deviations from calibration (Gebetsberger et. al 2018). 

4.3.2 Continuous ranked probability score (CRPS) and skill score (CRPSS) 
While the PIT is just a visual representation of how well a reported distribution matches the true 
realization, it cannot quantitatively evaluate the uncertainty reporting. 

The Continuous Ranked Probability Score (CRPS) is a proper scoring rule used to evaluate the 
accuracy of probabilistic forecasts for continuous variables, and therefore able to quantify the 
reporting by a single number. It measures the distance between the predicted cumulative distribution 
function (CDF) F(y) and the observed outcome yobs​, thus providing a single summary metric that 
reflects both calibration and sharpness of the forecast distribution (Gneiting et. al 2007). Hereby, 
sharpness refers to the width of the distribution. The sharper a distribution, the smaller the standard 
deviation. Mathematically, the CRPS is defined as  

, 𝐶𝑅𝑃𝑆(𝐹, 𝑦
𝑜𝑏𝑠

) =
−∞

∞

∫ [𝐹(𝑦) − 1{𝑦 ≥ 𝑦
𝑜𝑏𝑠

}]2𝑑𝑦

where is an indicator function that equals 1 if ​ and 0 otherwise. The CRPS can 1{𝑦 ≥ 𝑦
𝑜𝑏𝑠

} 𝑦 ≥ 𝑦
𝑜𝑏𝑠

be interpreted as the integrated squared difference between the forecast CDF and the empirical step 
function at the observation . A smaller CRPS indicates a better probabilistic forecast, with zero 𝑦

𝑜𝑏𝑠

being the ideal score when the forecast perfectly matches the observation. For deterministic 
forecasts (where F(y) is a step function centered at a single value), the CRPS reduces to the mean 
absolute error (MAE), making it a natural extension of classical point forecast evaluation to the 
probabilistic domain. 

 

 

https://doi.org/10.1175/MWR-D-17-0364.1
https://doi.org/10.1111/j.1467-9868.2007.00587.x
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Figure: CRPS example (grey area) of a temperature forecast distribution (orange) comparing the to the 
observed truth (blue). 

Figure: CRPS example illustrates this concept by a probabilistic temperature forecast that is 
compared to the true observation. The CRPS for this individual forecast can be interpreted as the 
grey area. Ideally, the probabilistic forecast would provide the expectation value of the observation 
with a standard deviation going towards zero, in order to have the smallest area, or CRPS 
respectively. 

The CRPS is widely used in meteorology, hydrology, and ensemble forecasting, as it provides a holistic 
assessment of probabilistic forecast performance without requiring arbitrary threshold selection. In 
the context of this study, the CRPS is used as an optimization criteria to adjust the reported 
uncertainty towards a reporting with minimum CRPS . 

To quantitatively assess the performance of the optimized uncertainty components, the Continuous 
Ranked Probability Skill Score (CRPSS) can be applied. The CRPSS provides a relative measure of 

predictive skill by comparing the mean Continuous Ranked Probability Score (CRPS) of the optimized 
against an original reported uncertainty. It is defined as 

, 𝐶𝑅𝑃𝑆𝑆 =  1 −  
𝐶𝑅𝑃𝑆

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝐶𝑅𝑃𝑆
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

A CRPSS value close to 1 indicates that the optimized uncertainty description reproduces the 
observed distribution well and outperforms the reference, whereas values near 0 or negative values 
imply little to no improvement.  

4.3.3 CRPS optimization simulations 
To evaluate the behavior of the Continuous Ranked Probability Score (CRPS) as a function of reported 
uncertainty, synthetic data were generated under controlled conditions where the true uncertainty 
exhibits a solar zenith angle (SZA) dependency. Each simulated observation  was drawn from a 𝑦
Gaussian distribution with a fixed mean and a standard deviation defined as µ σ

𝑡𝑟𝑢𝑒
 

, σ
𝑡𝑟𝑢𝑒

​ = 5𝑒−5 +  1𝑒−4⋅𝑆𝑍𝐴2

where SZA is uniformly sampled between 20° and 80°. To mimic systematic misreporting, the initially 
reported uncertainties were scaled versions of the truth ( ), representing either underdispersive (σ

𝑡𝑟𝑢𝑒
 

) or overdispersive ( ) conditions. σ
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

= 0. 3 σ
𝑡𝑟𝑢𝑒

​ σ
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

= 1. 5 σ
𝑡𝑟𝑢𝑒

The CRPS for each Gaussian forecast was computed using the analytical form 

 𝐶𝑅𝑃𝑆(𝑦, μ, σ) = σ[𝑧(2Φ(𝑧) − 1) + 2ϕ(𝑧) − 1/ π​​],
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with ​, and  denoting the standard normal cumulative distribution and probability density 𝑧 𝑦−µ
σ Φ

functions, respectively. 

To correct the misreported uncertainties, a parametric optimization was applied by minimizing the 
mean CRPS over all samples. The reported uncertainty ​ was adjusted using a smooth scaling σ

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

function  represented as a natural spline basis:  α(𝑆𝑍𝐴)

 σ
𝑠𝑐𝑎𝑙𝑒𝑑

(𝑆𝑍𝐴) = σ
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

​⋅𝑒𝐵(𝑆𝑍𝐴)β + 𝑜𝑓𝑓𝑠𝑒𝑡,

where ) is the spline basis matrix and  are the fitted coefficients. The parameters  and the 𝐵(𝑆𝑍𝐴 β  β
offset term was optimized using the BFGS algorithm to minimize the CRPS loss function. 

Figure: Simulated underdispersive uncertainty reporting and Figure: Simulated overdispersive 
uncertainty reporting illustrate the results for the underdispersive and overdispersive cases, 
respectively. Each figure consists of: 

1.​ Three PIT histograms showing the distributions for 
○​ the truth (using ), σ

𝑡𝑟𝑢𝑒
 

○​ the reported uncertainty, and 
○​ the optimized uncertainty after CRPS minimization. 

2.​ Uncertainty as a function of SZA, comparing the true, reported, and optimized values. 

The optimized uncertainty curve reproduces the SZA-dependent pattern of the true uncertainty much 
more accurately than the initially reported one, demonstrating that CRPS minimization successfully 
detects and corrects SZA-dependent miscalibration in both scenarios. The PIT histogram based on 
the optimized uncertainties is nearly flat and closely matches the distribution obtained from the true 
uncertainties, indicating a proper uncertainty reporting.  

In contrast, the PIT histograms derived from the underdispersive and overdispersive reported 
uncertainties exhibit pronounced U-shaped and inverted U-shaped patterns, respectively, consistent 
with under- and overestimation of variability. 

Overall, these results confirm that CRPS-based optimization provides an effective framework for 
adjusting reported uncertainties in retrieval products. By explicitly incorporating SZA as a predictor, 
the method captures systematic dependencies and enhances the probabilistic reliability and 
consistency of the reported uncertainty estimates. 

 

Figure: Simulated underdispersive uncertainty reporting with CPRS optimization 

 

Figure: Simulated overdispersive uncertainty reporting with CPRS optimization  
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4.4 Uncertainty validation framework (UVF) 
The Uncertainty Validation Framework (UVF) builds on the SABAT approach to systematically evaluate 
and optimize the reported uncertainty components of the Pandora direct sun total column products. 
The method separates and sequentially validates the systematic, random, and mixed uncertainty 
contributions by combining the squared uncertainty components. 

In the first step, the systematic daily difference between the datasets is applied using the intercept 
obtained from the SABAT regression. Hereby, the maximum difference of all datasets being part of the 
regression is used as the observed daily bias. To quantify the quality of the reported systematic 
uncertainty, the ratio between the systematic daily difference and the reported systematic uncertainty 
can be used, as this ratio expresses how well the reported uncertainty envelope covers the observed 
variability: 

  𝑅
𝑠𝑦𝑠 

=  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑎𝑠 / 𝑈
𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

Values of > 1 indicates that the reported systematic uncertainty is too low, as the uncertainty 𝑅
𝑠𝑦𝑠 

reporting does not reflect the true observed difference. Contrary, values of < 1 suggests an 𝑅
𝑠𝑦𝑠 

overestimation. This ratio can therefore be directly used to scale and optimize the systematic 
uncertainty component. 

In the second step, after correcting for the systematic bias, the remaining variation of the datasets is 
investigated. Under ideal conditions, the remaining variations would just be random noise, and 
therefore be solely described by the random uncertainty reporting. However, as we expect structured 
patterns to occur, the remaining uncertainty is a combination of the random plus mixed components. 

These remaining uncertainty components can be visually validated using the PIT, and can be 
quantified using the CRPS optimization. The CRPS minimization, performed as a function of the solar 

zenith angle (SZA), ensures that the uncertainty reporting captures SZA-dependent effects and yields 
a statistically consistent predictive distribution. Hereby we can also make use of the ratio approach  

  𝑅
𝑚𝑖𝑥 

=  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
𝑚𝑖𝑥𝑒𝑑

 /𝑈
𝑚𝑖𝑥𝑒𝑑

Where  reports how much the mixed uncertainty component ( ) needs to be optimized, in 𝑅
𝑚𝑖𝑥 

𝑈
𝑚𝑖𝑥𝑒𝑑

the same way as for . 𝑅
𝑠𝑦𝑠 

Finally, the new optimized combined total uncertainty is derived as the quadratic sum of the optimized 
components: 

 𝑈
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

2 + 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
𝑚𝑖𝑥𝑒𝑑

2

5 Uncertainty validation and conclusions 
The validation of the uncertainty reporting for Pandora direct sun total column NO₂ was conducted 
using the Uncertainty Validation Framework (UVF). The UVF approach allows decomposition and 
quantitative validation of the individual uncertainty components — namely, independent (random), 
mixed (structured), and common (systematic) uncertainties — through optimization against 
co-located Pandora observations. 

Across multiple sites, the comparison between reported and optimized uncertainties revealed a 
systematic underestimation of the common (systematic) component for high-NO₂  environments such 
as Seoul-SNU. Comparing the observed systematic difference with the reported systematic 
uncertainty by the ratio , the systematic uncertainty would need to be adjusted by a factor of 7-9 𝑅

𝑠𝑦𝑠 

for the two datasets, as shown in Figure: Systematic uncertainty evaluation for Seoul-SNU .  
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Figure: Systematic uncertainty evaluation for Seoul-SNU in the period January to March 2021 for the two 
datasets (green and blue) 

After removing the systematic difference, the residual variations were still not fully covered by the 
remaining combined uncertainty, covering random and mixed uncertainty components. The 
corresponding PIT histogram showed a typical U-shape which indicates a too low uncertainty 

reporting (Figure: Mixed uncertainty for Seoul-SNU). This visual finding was also supported by the 
CRPS optimization, which suggests an increased mixed component. 

 

Figure: Mixed uncertainty for Seoul-SNU for the two datasets 

 

The values larger than 1 suggests a minor increase of 1.6 to 2.2 on the median, which is SZA 𝑅
𝑚𝑖𝑥 

dependent, as shown in Figure: Optimized mixed uncertainty for Seoul-SNU by SZA bins. These two 
findings indicate that, in particular, calibration-related sources of uncertainty (e.g., slant column and 
effective gas temperature in the reference spectra) might currently be underestimated in the Pandora 
retrieval chain, where the uncertainty reporting does not reflect the observed differences between 
datasets.  
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However, Figure: Combined uncertainty for Seoul-SNU visualizes the original and optimized combined 
uncertainty reporting. Even this huge scaling factor of 7-9 for systematic, and up to 2.2 for mixed 
components, does not blow up the uncertainty artificially. Large scale  and even small scale variations 
are still distinguishable, but the uncertainty reporting obtains much more reliability about most likely 
actual values of the gas amount.  

 

Figure: Optimized mixed uncertainty ratio for Seoul-SNU by SZA bins 

 

Figure: Combined uncertainty for Seoul-SNU 2020-11-12 

 

Figure: Combined uncertainty for Seoul-SNU zoomed in between 15:00 and 15:30 local time  
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This improved reliability can be visually assessed by comparing the PIT histograms before and after 
the optimization, as shown in Figure: PIT for originally and optimized uncertainty with a strongly 
reduced U-shape for both datasets. The W-shape, visible for both the originally reported and the 
optimized situation, can be explained by a slightly in-proper distributional assumption of the evaluated 
observation. E.g. if the  observations are based on a heavier-tailed distribution such as the logistic or 
student-t, evaluating a PIT using the Gaussian assumption can lead to W-shaped patterns 
(Gebetsberger et. al 2018). This shape even remains after the optimization, but much less expressed 
on the tails of the distribution.  

 

Figure: PIT for originally reported (left) and optimized uncertainty (right). 

This improved PIT shape is also quantified in the probabilistic validation metric, the CRPS, as 
summarized in Table: CRPS and CRPSS summary. The CRPS for Seoul-SNU improved by a factor of 
12.62, or expressed as a skill score of CRPSS by 0.92. While Seoul-SNU depicts a highly polluted site 
that also describes one of the more extreme cases of the uncertainty reporting, improvements but of 
lower magnitude were found for all other sites. Remote sites such as Izaña, show the smallest 
improvement of a factor of 1.52, which translates to a skill score of 0.34. 

  

Location CRPS_reported CRPS_optimized Improvement CRPSS 

Izana 1.37×10⁻⁶ 9.00×10⁻⁷ 1.52 0.342 

LaPorteTX 4.14×10⁻⁶ 2.49×10⁻⁶ 1.66 0.399 

Downsview 2.62×10⁻⁶ 1.57×10⁻⁶ 1.67 0.401 

CharlesCityVA 1.61×10⁻⁶ 9.39×10⁻⁷ 1.72 0.418 

GreenbeltMD 2.34×10⁻⁶ 1.11×10⁻⁶ 2.11 0.527 

Rome-SAP 5.17×10⁻⁶ 2.37×10⁻⁶ 2.18 0.541 

BostonMA 6.10×10⁻⁶ 2.24×10⁻⁶ 2.72 0.633 

Seoul-SNU 2.24×10⁻⁵ 1.78×10⁻⁶ 12.62 0.921 

Table: CRPS and CRPSS summary sorted by improvement 

Figure: Optimized uncertainty components summarizes the validated uncertainty components for the 
investigated sites, as a function of their median NO₂ amounts. In contrast to Seoul-SNU, at remote 
sites such as Izaña, the reported systematic uncertainty appeared even slightly overestimated.  This 
site-dependent behavior suggests that the uncertainty parameterization in the retrieval algorithm may 
not fully capture the variability in measurement conditions or instrument configurations across the 
network.   

The mixed (structured) component, which captures retrieval and algorithm-related uncertainties, was 
generally found to be slightly underestimated, as seen by  > 1 in the left graphic of Figure: 𝑅

𝑚𝑖𝑥 

Optimized uncertainty components for all locations investigated. However, its overall contribution to 

 

https://doi.org/10.1175/MWR-D-17-0364.1
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the combined uncertainty is minor compared to the systematic component, and thus its effect is 
largely masked in the combined uncertainty analysis. 

 

Figure: Optimized uncertainty components as a function of the median total NO₂ amounts for mixed 
(left) and systematic (middle) components, and the combined uncertainty (right). 

The combined uncertainty—representing the sum of independent, mixed, and systematic 
contributions—showed notable site dependence. At polluted sites, the combined uncertainty was 
underestimated, driven primarily by the systematic component. Conversely, for remote and cleaner 
sites, a slight overestimation was observed. Nevertheless, even with an increased mixed component, 
the remote sites showed an overall decreased uncertainty, due to the higher magnitude of the 
systematic component.  

Satellite validation processes are currently not affected by the identified underestimations, as the 
associated uncertainty reporting is typically much higher for the satellite. However,  the improved 
quantification of the PGN uncertainty enhances the overall reliability and interpretability of Pandora 
data products. The UVF approach successfully demonstrated its capability to validate and adjust 
individual uncertainty components, thereby potentially strengthening confidence in the reported 

uncertainty metrics. However, it must be noted that the UVF is used as a diagnostic tool to highlight 
the problematic components, in order to allow a re-investigation of the algorithm. 

Further work will focus on investigating the underlying causes of the underestimated systematic 
uncertainty. Potential contributing factors include unaccounted calibration drifts, environmental 
dependencies, or limitations in the current modeling of reference spectra. Extending the framework to 
additional atmospheric constituents beyond NO₂ will provide a broader assessment of the Pandora 
network’s uncertainty performance. 
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